Tuples
Named Tuples
Loops contd

'How c:ovv\/&w\«wau are %m Lt
UL%/\S /fOf /QOOFS o (*jour ”P{O?WW\S?
A \flL‘fj Cm/f(SY‘-CJo\C
B Need W% Prmu
C- A Lt cmfue})

D \IQf«’ Um,fu.ua

Tuples

* Similar to lists: store a sequence of elements
Ist =[10, 20] //ex of a list
tup = (10, 20) //ex of a tuple

* Elements are ordered an can be accessed using the
appropriate index

tup(O]
tup[1]

* Different from lists in the following ways
* Can’t change an element in the tuple
* Can’t sort the elements in a tuple

Named Tuples

Used to package data with multiple attributes: e.g. representing a
student in your program

A student’s attributes may be: name, perm number, major etc.
Named tuples make it easier to access each attribute

from collections import namedtuple

#Design your named tuple object
Student = namedtuple(‘Student’, ‘/name perm major gpa’)

Create objects of type Student
s1 = Student(“Jack”, 123443, CS, 3.8)
s2 = Student(“Mary”, 8932737, CE, 3.9)

Access the elements of the objects
print(sl.name, sl.perm)

The accumulator pattern

Useful for calculating something from repeated
smaller computations

Example: find the sum of a series

def sumGeometric series(n):
"' 'returns the sum of the series
1 + 2%%1 4 2%*%2 4 2%*%3 4 4 2%*p''!

Assume n>»=0 '''

More on the accumulator pattern

def countWords(sentence):
"returns the number of words in the sentence”

def countWords(sentence, len):
"returns the number of words in the sentence with
length greater than len”

Concept Test

def containsOddNumber (lst):

return True if any element in lst is

odd, otherwise return False'''

for x in 1lst: 0

if (x % 2 == 1): The Ledf ms/%(ﬂwb‘
return True oUW

else: O\}SU\A‘Vé 6\/:\%\(q/\lkW‘bW

’_ﬁétum Faﬁ o G o

Is the above implementation correct? (Why rr

Why not) gst = [2. U, 10J]w

A. Yes

No _Q}k 2 lf P L(/ lo:] ‘ Hﬂ“
Wh7 fad st rﬂ%ﬂ{ﬁﬁ(m /‘.Q}‘, - L 2{ 1.{ 13 l \‘{\AL

Index vs value

def largestOddNumber(lst):

"return the maximum odd number in the list,
return -1 if the list has no odd numbers”

def indexOfLargestOdd(lst):

"return the index of the largest odd number in
the list, return -1 if there are no odd numbers
in the list”

Concep Question

def hasVowels (word) :
if type (word) == str:
for letter in word:
if letter in ‘aeiou’:
return True
else:

return False

What is the return value for hasVowels("")?
A. True
B. False

C. None

Motivating While Loops

» So far, we know about one type of loop: for loop

» It requires a sequence (e.g. a range sequence or a string) to
loop over

» Another type of loop is the while loop: it repeatedly tests a
condition, executing the entire body of the loop if it is True,
and terminating the loop if it is False

» Useful when there is no sequence to loop over

» Commonly used when we don’t know how many times the loop
will run

ConcepTest

What is printed by the following code? (Output is on one line to
save space.)

X =6

while x > 4:
print (x)
x =x -1

A.6 5
B.6 5 4
C.54
D.54 3
E.6 543

vV v v v Vv

ConcepTest

What is printed by the following code? (Output is on one line to
save space.)

X =6

while x > 4:
x =x -1
print (x)

A.6 5
B.6 5 4
C.5 4
D.5 4 3
E.6 543

v v v Vv

\4

For vs. While

Use for when:
» You want to loop through an entire sequence without stopping
» The number of iterations does not depend on user input

» The increment to the loop variable is the same on every
iteration

s = ’abc’
for count in range(len(s)):
print (’Index {0} is {1}’.format(count, s[count]))

count = 0

while count < len(s):
print (’Index {0} is {1}’.format(count, s[count]))
count += 1

ConcepTest

valid = False

while not valid:
s = input ("Enter a password: ")
valid = len(s) == 5 and s[:2] == ’xy’

Which of the following passwords gets us out of the loop?

> A xyz
» B. abcxy
» C. xyabc

» D. More than one of the above passwords get us out of the
loop

» E. None; the loop never executes and no passwords are
obtained

True and break

» There are several ways to write a loop whose body is required
to run at least once

1. Artificially make the condition true before the loop starts (like

inputloop.py)

2. Copy some loop code above the loop to make the condition
true

3. Use True as the condition and break to exit the loop

» break causes immediate termination of the loop
» break can make code difficult to read if used improperly
» We frequently do not allow break on exams or assignments

ConcepTest

A valid password is one that is length 5 and starts with xy. Such
passwords should get us out of the loop. Which of these does this?
> A.

while True:
s = input ("Enter a password: ")

if len(s) == 5 and s[:2] == ’xy’:
break
> B.
s = input ("Enter a password: ")
while len(s) == 5 and s[:2] == ’xy’:

s = input ("Enter a password: ")
» C. Both are correct

» D. None is correct

ConcepTest

What is the output of this code? (Output is on one line here to
save space.)

n=3
while n > O:
if n ==
n = -99
print (n)
n=n-+1

A. 34
B.345
C.3 4 -99
D.3 4 5 -99

v v v v

