
Loops
Tuples
Named	Tuples

Loops:	
Repetition		without	being	repetitive

Syntax

for <item> in <collection>:
Code to loop over
print(“Repeat this”)

Example: Iterating through collections
• Print each character of a string
• Print each element of a list
• Print each element of a tuple

Concept	Test
• What is the output of this code?

for x in [1, 2, 3]:
print(‘Hello’*x) # using x inside the loop

A. 1 2 3
B. ‘Hello’ is printed 3 times
C. Hello

HelloHello
HelloHelloHello

D. None of the above

Q

Range()	function
• Used in a loop when we know the number of times we want

to repeat executing some code

range(5) # think of it as producing a list [0, 1, 2, 3, 4]
range(1, 5)# The first parameter is a starting value

The second parameter is the stopping value
Output [1, 2, 3, 4]

range(0, 10, 2) # The third parameter is the step count
#[0, 2, 4, 6, 8]

for x in range(5):
print(‘Hello’)

Concept	Test
What is the output of this code?

for x in range(1,4,2):
print(2**x, end = " ")

A. 1 4 2
B. 2 16 4
C. 2 8 16
D. 2 8
E. None of the above
o

The	accumulator	pattern
Useful for "accumulating" something while going
through a collection.
Example: sum the elements of a list of integers

def sumList(lst):
''' return the sum of elements in lst
'''

The	accumulator	pattern
Useful for "accumulating" something while going
through a collection.
Example: find the number of a times a vowel occurs
in a word

def numVowels(word):
''' returns the number of vowels

in a word '''

The	accumulator	pattern
Useful for "accumulating" something while going
through a collection.
We can accumulate into a list

def powerOfTwo(lst):
''' returns a new list: 2**lst
''' where each elementof the new list is zas element

in the old list

The	accumulator	pattern
Useful for calculating something from repeated
smaller computations
Example: find the sum of a series

def sumGeometric series(n):
'''returns the sum of the series
1 + 2**1 + 2**2 + 2**3 + …+ 2**n'''
Assume n>=0 '''

Conditionals:	if,	if-else
Assume x exists and represents an exam
score
if x > 70:

print ("Grade = Passed")

##

if x > 70:
print ("Grade = Passed")

else:
print ("Grade = Failed")

Conditionals:	if-elif-else
if x>90:

print ("Grade = A")
elif x >80:

print ("Grade = B")
elif x >70:

print ("Grade = C")
elif x >60:

print ("Grade = D")
else:

print("Grade = F")

Loops	(accumulator	pattern	
and	conditionals)
def countOddNumbers(lst):

''' returns the number of odd numbers in lst
'''

Loops	and	conditionals
def containsOddNumber(lst):
"return True if any element in lst is odd,
otherwise return False”

def containsAllOdd(lst):
"return True if all the elements in lst are odd,
otherwise return False”

Concept	Test
def containsOddNumber(lst):

'''return True if any element in lst is
odd, otherwise return False'''
for x in lst:

if (x % 2 == 1):
return True

else
return False

Is the above implementation correct?(Why or
Why not)
A. Yes
B. No

More	on	the	accumulator	pattern
def countWords(sentence):

”returns the number of words in the sentence”

def countWords(sentence, len):
”returns the number of words in the
sentence with length greater than len”

Tuples
• Similar to lists: store a sequence of elements
lst = [10, 20] //ex of a list
tup = (10, 20) //ex of a tuple

• Elements are ordered an can be accessed using the
appropriate index

tup[0]
tup[1]

• Different from lists in the following ways
• Can’t change an element in the tuple
• Can’t sort the elements in a tuple

Named	Tuples
• Used to package data with multiple attributes: e.g. representing a

student in your program
• A student’s attributes may be: name, perm number, major etc.
• Named tuples make it easier to access each attribute

from collections import namedtuple

#Design your named tuple object
Student = namedtuple(‘Student’, ‘name perm major gpa’)

Create objects of type Student
s1 = Student(“Jack”, 123443, CS, 3.8)
s2 = Student(“Mary”, 8932737, CE, 3.9)

Access the elements of the objects
print(s1.name, s1.perm)

