Lists,
Tuples,
NamedTuples

Introduction to Computer Science!

\ '

Charaver

Storlng sequences “obed " shig

Strings — stores sequence of characters

Lists — stores sequence of any type (including
mixed types) o

Tuples — Similar to lists with the difference that
they cannot be modified

NamedTuples — Like tuples but more convenient
way of indexing

Lists: Ordered collection of
multiple values

* Lists are ordered st
* List elements can be accessed’by index

* Lists can contain (different) types of objects
* Lists can have duplicate values

* Lists can be nested

* List elements can be modified (mutable)

* Lists are dynamic (they can grow and shrink)

()

Lists are Mutable, Strings are Not

This list “lives” in your computer’s memory

W2
myL --{-"e” []-, 2!, :3/ ,ZK]
o « 2 3

>>> myL = [1, 2, 3, 4]# same as myL = list(range(1l,5))
>>> myL[3] = 42 # Indexing MUTATES the list!
It changes the list in place

>>> myS =“Apple” —7 sMX e
>>> myS[3]= 'z’ (ganot \wodsfy "

#Error!

Concep Test
0 \

fruits = ["apple", "Qgﬁgﬁgx, "orange"]
fruits[l] = "pear” ”f<“r
print (len(fruits))

What is the output of this code?
Al

C. 4
D. None of the above

List methods

Type dir(list) to get all the
methods:

[..'append', 'clear', 'copy', s
'extend', 'index', ‘'insert', 'pop’,
‘remove’', 'reverse', 'sort']

count

>> Qg}p(list.sort)
Help on method descriptor:

sort(...)

L.sort(key=None, reverse=False) -> None
-- stable sort *IN PLACE* .

Concep Test
2

fruits = ["apple", "banana", "o;;ﬁgé:]

fruits[-1] = 3 —\
print (fruits.count (3))

What is the output of this code?

1
3. 3

C. 4
D. Error

Tuples

Similar to lists: store a sequence of elements
Ist = [10, 20] //ex of a list
tup = (10, 20) //ex of a tuple

Elements are ordered an can be accessed using the
appropriate index

tup[0]
tup[1]

Different from lists in the following ways
* Can’t change an element in the tuple
* Can’t sort the elements in a tuple

Creating empty lists and tuples

 Different ways to create an empty list:
1st = []
1st = list()

* Different ways to create an empty tuple:

tup = ()
tup = tuple()

Creating tuples with one
element

* Create a tuple with one integer element 10
tup = (10) # Incorrect, we’ll discuss why

tup = (10,) # This is correct

Concep Test

fruits = ("apple", "banana", "orange'")
fruits[-1] = 3
print (fruits.count (3))

What is the output of this code?
Al

3.3

C. 4

D. Error

9,, class @xereLse -

Rc[mxw* e %vumxg b fac- e board @fam
- -1 X

X o) -

— (-] -

Whi Ub‘ﬂu /fullow‘ owld a,m‘ m""hf‘-’-‘“—"
He board L .Jy

p- Strieq
B Lk dl N»'-/(S
C- 1 urlc

Q

psr - [)+g HLe g d hyplhess

Lst EL] - ‘X, 7 . a st .)L’sl»;l

Ls+ (3] % g d °
\o'

Named Tuples

Used to package data with multiple
attributes: e.g. representing a student in

your program

A student’s attributes may be: name, perm
number, major etc.

Named tuples make it easier to access each
attribute

Named Tuples

from collections import namedtuple

#Design your named tuple object

Student = namedtuple(‘Student’, ‘name perm
major gpa’)

Create objects of type Student
sl = Student(“Jack”, 123443, CS, 3.8)
s2 = Student(“Mary”, 8932737, CE, 3.9)

Access the elements of the objects
print(sl.name, sl.perm)

Coding problem

* Write a function swap that takes three inputs:
1) A list: Ist
2) Index1: il
3) Index2 : i2

The function should swap the elements at index i1 and i2

