
Python	
Functions	
Introduction to Computer Science!

1

Functioning in Python

my own function!

def dbl(x):
""" returns double its input, x """
return 2x

This doesn't look quite right…

my own function!

def dbl(x):
""" returns double its input, x """
return 2*x

Functioning in Python

Comments

They begin with #

keywords

def starts the function
return stops it immediately

and sends back the return valueDocstrings

(1) describes overall what the function does, and
(2) explains what the inputs mean/are

They become part of python's built-in help system!
With each function be sure to include one that

Some of Python's baggage…

my own function!

def dbl(x):
""" returns double its input, x """
print "Doubling input ", x
return 2*x

Essential Definitions and Rules
(do memorize)

comment

docstring
function header

Function
body

parameter (also called argument)

Indentation: All the lines in the function body are indented from the function
header, and all to the same degree

my own function!

def dbl(x):
""" returns double its input, x """
print("Doubling input ", x)
return 2*x

Flow of Execution

Function definitions
(including calls to
other functions)

Function calls>>> dbl(21)

When you call a function, Python executes the function starting at the
first line in its body, and carries out each line in order (though some
instructions cause the order to change… more soon)

my own function!

def dbl(x):
""" returns double its input, x """
print("Doubling input ", x)
return 2*x

Parameters are special variables

Function definitions
(including calls to
other functions)

Function calls>>> dbl(21)

When you call a function, the value you put in parenthesis gets put
into the “box” labeled with the name of the parameter and is
available for use within the function.

x

my own function!

def times(x, y):
""" returns x times y """
print("Multiplying ", x, "and", y)
return x*y

Multiple parameters are allowed

Function definitions
(including calls to
other functions)

Function calls>>> times(21, 2)

When you call a function, the values you put in parenthesis gets put
into the “boxes” labeled with the names of the parameters (in the
order in which they are listed)

x

y

Which	of	the	following	contains	
a	function	call?
(1)type(4.5)
(2)def dbl(x):

return 2*x
(3)area(2, 9)
(4)print("Hello")

A. (3) only
B. (2) and (3)
C. (1), (3), and (4)
D. All of (1), (2), (3), and (4) include a function call 8

my own function!

def fortyTwo():
""" returns 42 """
return 42

No parameters is also allowed

>>> fortyTwo
As much as I like 42, I
don’t quite like this…

my own function!

def fortyTwo():
""" returns 42 """
return 42

(But you still need parentheses)

>>> fortyTwo()
Ahh(), much better

my own function!

def printName():
""" prints a message, no return statement"""
print(“My name is Turtle”)

No return statement is also allowed

>>> printName()

def halve(x):
""" returns half its input, x """
return div(x, 2)

def div(y, x):
""" returns y / x """
return y / x

Functions can call Functions!!

>>> halve(84)

When in doubt, draw it out!

def halve(x):
""" returns half its input, x """
return div(x, 2)

def div(y, x):
""" returns y / x """
return y / x

Functions can call Functions!!

>>> halve(85)
What does halve(85) return?
A. 42
B. 42.5
C. 0
D. 0.02352 (i.e., 2 divided by 85)

Print	vs.	return

14

Your job: In the following function calls decide which version of
squared was used—or whether it is impossible to tell from the
output given.

Print	vs.	return

15

Your job: In the following function calls decide which version of
squared was used—or whether it is impossible to tell from the
output given.

def halve(x):
""" returns half its input, x """
return div(x, 2)

def div(y, x):
""" returns y / x """
print y / x

Functions can call Functions!!

>>> halve(85)
What does halve(85) return?
A. 42
B. 42.5
C. 0
D. None

Testing
• You must follow good defensive coding strategies, including

testing your code extensively
• In class we will explore using the pytest framework, refer to

code written in lecture for more information

17

