Python Lists and Dictionaries

CS 8: Introduction to Computer Science, Winter 2019
Lecture \#13

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Hw07 out today - DUE ON MONDAY 3/11
- Lab07 - will be issued for Tuesday
- Due by next week Monday by 11:59 PM
- A little involved, so feel free to pair-up (optional)
- You are still working on Project \#1... right?
- MIDTERM \#2 is graded!
- Will be put up on GauchoSpace by tomorrow
- To review your midterms: same arrangement as with Midterm \#1

CS 8, W 19 Midterm Exam \#2 Distribution

$$
\text { Av. }=82.5 \quad \text { Median }=83
$$

Lecture Outline

- Doing more with Lists
- Simple Example: Find the Median of multiple numbers
- Dictionaries

What Operations Can We do with LISTS?

- Find min, max, sum
- max(list), min(list), sum(list)
- How does this work with numbers? strings?
- Add item to a list (at the end)
- list.append(item)
- Sort a list
- list.sort()
- Reverse a list
- list.reverse()
- Remove item from a list
- list.remove(item)
- Count how many of something
- list.count(item)
- Add item to a list (anywhere: before some index)
- list.insert(index, item)
- Remove LAST item from a list
- list.pop()

Calculating Means and Medians Using Lists

- Mean (Average) $=(\max -\min) /$ sum
- Median (middle item) is more complex...
- This isn't in any list function, so we have to develop it ourselves

Example: \quad| $\mathbf{1}$ | $\mathbf{5}$ | $\mathbf{2}$ | $\mathbf{1 0}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | sort it first and then find the middle value...

| 1 | 2 | 3 | 5 | 6 | 7 | 7 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Median=6

If there's an even number of entities, then employ an average calculation...

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | 5 | 6 | $\mathbf{7}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Median $=5.5$

"Find the Median" Algorithm

1.Sort the list first
2. Determine the length of the list (why?)
3. Find the middle of the list (length/2)
a) If the length is an odd number, then there's only 1 middle
b) If the length is an even number, then identify the middle 2 and get their average

"Find the Median" Function

```
def median(alist):
    # Make a copy so we won't change "alist" itself (why worry about that?)
    CopyList = alist
    CopyList.sort() # guess what this does??
    if len(CopyList)%2 == 0: # if there is an even no. of things in the list,
            # then, we should identify the middle 2 numbers
            rightMiddle = len(CopyList)//2 # That's the *position* of the right-middle no.
            leftMiddle = rightMiddle - 1 # That's the *position* of the left-middle no.
            median = (CopyList[leftMiddle] + CopyList[rightMiddle])/2
    else:
    # if there is an odd no. of things in the list,
                            # then, it's easier: just find the middle number
        index_of_middle = len(CopyList)//2
        median = CopyList[index_of_middle]
    return median
```


Dictionaries

- Popular data structures in Python
- Unordered associative collections
- Basically like lists, but you can access each value by a key
instead of an index position
- Use curly braces, \{ \} to define a dictionary

NOTE THE SYNTAX and the use of the colon
key:value

Let's try it!

Dictionaries - Key/Value Pairs

- Use the familiar [] to access, set or delete by key

```
>>> print(ages['alice'])
    20
>>> ages['pete'] = 24 # adds new item in this case
>>> del(ages['pete']) # bye bye pete
```

- In Dictionaries, we don't use indexing like we did with lists
- That's because values are not stored in a discernible order
- How do find things in a dictionary? We go by the key.

Useful Functions for Dictionaries

```
Assume:Ages = {'Britta':33, 'Annie':20, 'Jeff':42 }
```

Show all the keys

- Ages.keys() = ['Britta', 'Annie', 'Jeff']

Show all the values

- Ages.values() = [33, 20, 42]

Another Useful Dictionary Function

Assume: Ages = \{'Britta':33, 'Annie':20, 'Jeff':42 \}

Show all the items in the dictionary as a list of tuples

- Ages.items() =
[('Britta', 33), ('Annie', 20), ('Jeff', 42)]

```
    What Will These Do, if:
ages = { 'sam':19, 'alice':20, 'ben': 22, 'bert': 44 }
```

for item in ages: print(item)
for item in ages.keys(): print(item)

```
for item in ages.items(): print(item)
```

for item in ages.values(): print(item)
for item in ages.items(): print(item[0])

Let's try it!

Application Example: Finding the Mode

- Number that occurs most often within a set of numbers
- Example:

Consider the set of numbers: $1,3,2,3,5,1,6,1$ The mode is 1 .

- Given a list nums $=[1,3,2,3,5,1,6,1]$, how do I find the mode?
- I'll have to make a count of all the elements
- The element with the highest count is the "mode"

Find the Mode of a List: The Algorithm

Simple (without coding detail) algorithm/plan:

We'll create a dictionary to store all the numbers in the list WITH their frequency counts (i.e. how often they appear):

- Go thru each number in the list, and:
- Put it in the dictionary (as key) and mark the count (as value) as 1
- If you see that number again, increment the value
..cont...

Find the Mode of a List: The Algorithm

...cont...

- When this is done, look at all the values you've collected and search for the BIGGEST one (why?)
- Now that you have the maximum value, look for the key that it's associated with THAT'S YOUR MODE! ©
- Careful: there may be cases where you have MORE than 1 mode!

Finding The Mode Of A List

```
def mode(alist):
    countdict = {}
    for item in alist:
    if item in countdict:
        countdict[item] += 1
        else:
        countdict[item] = 1
        # Start with a blank dictionary
    # Is it already in the dictionary?
    # if so, increment its "value"
    # If it ISN'T in the dictionary...
# Put it in there! Give it "value" = 1
```

...Continued next slide

Finding mode (cont.)

Continued...

```
countlist = countdict.values() # Make a values list
maxcount = max(countlist)
# Get the biggest value
modelist = [ ] # make a list of the modes (why a list?)
for item in countdict: # Go thru the dictionary you've created
    if countdict[item] == maxcount: # If you find the "biggest value"
        modelist.append(item) # Add the "biggest value" key
```

return modelist

YOUR TO-DOs

\square HW7 (due on Monday, 3/11)
Lab7 (go to lab tomorrow)
\square Keep working on your Project Assignment!

</LECTURE

