
Modules	in	Python	
Decision	Control	

CS	8:	Introduction	to	Computer	Science,	Winter	2019	
Lecture	#6	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Administrative	
•  Hw03	–	due	today!	
•  Hw04	–	due	next	week	on	MONDAY	

•  You	can	check	old	homework	on	GradeScope	

•  Lab03	on	Tuesday	
–  Extended	due	date!	Due	by	next	week	Monday!	

•  Midterm	Exam	#1	is	on	Wed.	Feb.	6th		
1/27/19	 Matni,	CS8,	Wi19	 2	

A	Note	on	Homework	Expectations	
•  Your	lecture	notes	
•  My	lecture	slides	
•  The	book	chapter	sections	
•  Your	“detective”	work	
–  i.e.	try	things	out	on	IDLE	

•  Practice,	Practice,	Practice!!!	
1/25/19	 Matni,	CS8,	Wi19	 3	

Midterm	#1	Exam	
•  Feb.	6th	9:30	AM	–	10:45	AM	
•  In	THIS	classroom	(unless	you	are	a	DSP	student)	
•  Come	10	MINUTES	EARLY	as	there	is	pre-assigned	seating	
•  CLOSED	BOOK!	But	you	can	bring	1	page	of	notes	

–  Single-side	only,	8.5”	x	11”	
–  Hand-written	or	computer	printed	is	OK!	
–  Must	turn	it	in	with	the	exam	when	done	
–  No	calculators	/	cell	phones	/	any	type	of	computer	

•  Bring	your	UCSB	ID	with	you.	NO	EXCEPTIONS.	
1/27/19	 Matni,	CS8,	Wi19	 4	

Lecture	Outline	
•  Modules	in	Python	

•  Boolean	Operations	

•  Conditionals	i.e.	Decision	Control	

1/25/19	 Matni,	CS8,	Wi19	 5	

Modules	in	Python	
•  We	can	collect	a	bunch	of	Python	functions	and	save	them	

together	in	a	file	
–  Often	called	a	module	or	library	
–  It’s	a	good	way	to	organize	functions	that	“go	together”	for	a	specific	

purpose	
–  The	module	can	also	have	other	code	related	to	these	functions	

•  We	can	then	“import”	that	file	over	and	use	the	functions	for	
ourselves	in	our	own	program	files	

1/25/19	 Matni,	CS8,	Wi19	 6	

Modules	in	Python	
•  Recall	that	Python	is	Open-Source	Software	
– What	does	that	mean?	

•  A	lot	of	modules	have	been	created	by	various	people	
and	then	put	up	for	anyone	to	use	
–  Example:	modules	to	do	advanced	statistical	analysis,	to	
help	solve	linear	algebra	probs,	help	solve	ODEs,	etc…	

–  Google	“popular	python	libraries”!	

1/27/19	 Matni,	CS8,	Wi19	 7	

Reminder:	How	Can	We	Use	Functions?	

•  Once	we	define	them,	we	can	call	them:	
–  In	a	program	(in	same	file	where	they’re	defined)	
–  In	the	IDLE	Python	shell	
–  Example:						MyFunction(5,	6,	7)	

•  We	can	also	call	them:	
–  From	another	file	altogether	
–  (to	test	them	from)	using	Pytest	

1/26/19	 Matni,	CS8,	Wi19	 8	

Creating	a	Module	
Consider	a	couple	of	functions	that	we	wrote	and	that	we’d	like	to	use	
in	other	Python	programs:	

#	Doubling	function	
def	dbl(x):	
	return	2*x	

	
#	Halving	function		
def	half(x):	
	return	x/2	

1/25/19	 Matni,	CS8,	Wi19	 9	

Save	them	in	a	file.	
Let’s	call	it	PinkFloyd.py	
(just	happened	to	be	what	I	was	listening	to,	
but	I’m	sure	you	can	come	up	with	a	better	name)	

Using	Modules	in	Other	Files	
Inside	another	file,	we	can	still	use	the	functions	we	defined	and	saved	in	PinkFloyd.py,	like	this:	
	
	
#	We	want	to	use	those	functions	in	PinkFloyd.py	
import	PinkFloyd	
#	from	PinkFloyd	import	*						#	another	way	to	do	this	
	
print("Inside	PinkFloyd.py")	
	
print(PinkFloyd.dbl(5))	
print(PinkFloyd.dbl("UCSB"))	
print(PinkFloyd.dbl([1,	2,	3]))	
	
print(PinkFloyd.half(42))	

1/26/19	 Matni,	CS8,	Wi19	 10	

#	Doubling	function	
def	dbl(x):	

	return	2*x	
	
#	Halving	function		
def	half(x):	

	return	x/2	

Inside	PinkFloyd.py	

Inside	SomeOtherFile.py	

Conditional	Execution	
What	if	my	module	(e.g.	PinkFloyd.py)	has	instructions	in	it	other	than	the	
function	defs?	
	
#	Doubling	function	
def	dbl(x):	

	return	2*x	
	
#	Halving	function		
def	half(x):	

	return	x/2	
	
print("I'm	inside	PinkFloyd.py”)	
print(dbl(82.12))	

1/26/19	 Matni,	CS8,	Wi19	 11	

When	you	import	the	module,	you	may	
NOT	want	this	stuff	to	execute	

Conditional	Execution	
What	if	my	module	(e.g.	PinkFloyd.py)	has	instructions	in	it	other	than	the	
function	defs?	
	
#	Doubling	function	
def	dbl(x):	

	return	2*x	
	
#	Halving	function		
def	half(x):	

	return	x/2	
	
if	__name__	==	"__main__":	

	print("I'm	inside	PinkFloyd.py”)	
	print(dbl(82.12))	

1/26/19	 Matni,	CS8,	Wi19	 12	

Add	this	conditional	statement.	
Now	the	2	print	statements	are	only	
executed	when	we	run	PinkFloyd.py,	
not	when	we	import	it	

Testing	
#test_dbl.py	
import	pytest	
from	PinkFloyd	import	dbl	
	
def	test_dbl_1():	

	assert	dbl(0)	==	0	
def	test_dbl_2():	

	assert	dbl(2)	==	4	
def	test_dbl_3():	

	assert	dbl("UCSB")	==	"UCSBUCSB"	
	
Run	these	tests	from	the	unix	command	line:	
$python3	–m	pytest	test_dbl.py	
1/26/19	 Matni,	CS8,	Wi19	 13	

Relational	Operators	
•  To	check	if	two	objects	are	equal,	we	use:	

==	operator	
•  We	can	check	other	types	of	relationships	between	two	objects:	
<	
<=	
>	
>=	
!=	
	

1/26/19	 Matni,	CS8,	Wi19	 14	

Less	than	
Less	than	or	equal	to	
Greater	than	
Greater	than	or	equal	to	
Not	equal	to	

Q:	All	of	these	produce	what	kind	of	data	type?	
	
A:	Boolean	(i.e.	True	or	False)	

What	is	the	Output	of	the	print()	statement?	

a	=	3	
b	=	(a	!=	3)	
print(b)	
	
A.  True	
B.  False	
C.  3	
D.  Syntax	error	
1/26/19	 Matni,	CS8,	Wi19	 15	

Logic	Operators	
•  Logic	AND	

–  Use	in	Python:						x	and	y	
–  Presents	a	True	output	if	both	x	and	y	are	True	

•  Logic	OR	
–  Use	in	Python:						x	or	y	
–  Presents	a	True	output	if	either	x	and	y	are	True	

•  Logic	NOT	
–  Use	in	Python:						not	x	
–  Presents	a	True	output	if	x	is	False	(and	vice-versa)	

1/26/19	 Matni,	CS8,	Wi19	 16	

	Exercise	1	
What	is	the	output	of	these	print()	statements?	
	
x	=	True	
y	=	False	
z	=	True	
print(x	and	y)	
print(x	and	not	y)	
print((x	and	y)	or	z)	

1/26/19	 Matni,	CS8,	Wi19	 17	

ç	False	
ç	True	

ç	True	

	Exercise	2	
What	is	the	output	of	these	print()	statements?	
	
a	=	3	
b	=	4	
c	=	5	
print(a	==	3	and	b	==	4)	
print(not	(b	<	2)	and	not	(a	!=	5))	
print((a	>	0	or	b	==	0)	and	(c	<=	5))	

1/26/19	 Matni,	CS8,	Wi19	 18	

ç	True	
ç	False	

ç	True	

Exercise	3	
•  Write	a	function,	CheckNegInt()	that	takes	in	one	
argument	x	and	returns	True	if	2	conditions	are	met:	
–  That	x	is	an	integer	
–  That	x	is	a	negative	number	

def	CheckNegInt(x):	
	c	=	False	
	if	(type(x)	==	int)	and	(x	<	0):	
	 	c	=	True	
	return	c	
		

1/26/19	 Matni,	CS8,	Wi19	 19	

Controlling	the	Flow	of	a	Program	
•  Programs	will	often	need	to	make	decisions	on	what	
to	continue	doing	
–  Like	coming	to	a	fork	in	the	road…	

•  We	present	the	algorithm/program	with		
	 	 	 	a	conditional	statement	(a.k.a	if-then-else)	

1/27/19	 Matni,	CS8,	Wi19	 20	

Conditional	Statements:	if	and	else	

1/27/19	 Matni,	CS8,	Wi19	 21	

Let’s try it out!

Typical	Example	(NOTE	THE	INDENTS!!!)	
	
x	=	int(input("Enter	any	integer:	"))	
if	x	>=	0:	

	print	("You	entered	a	positive	number!")	
	print	("Or	it	could	be	zero!")	

else:	
	print	("You	entered	a	negative	number!")	

Conditional	Statements:	if	and	else	
The	syntax	in	Python	is:	

if conditional_statement :
 statement 1
 statement 2
 …

elif conditional_statement :
 else statements

elif conditional_statement :
 more else statements

else:
 default else statements

1/28/19	 Matni,	CS8,	Wi19	 22	

Let’s try it out!

a	=	int(input("Enter	a	number:	"))	
#	The	above	line	makes	the	program	
#	ask	the	user	for	a	direct	input	
#	into	an	integer.	More	on	this	later.	
	
if	(a	<	5):	

	print("It’s	less	than	five!")	
	
elif	(a	>	5):	

	print("It’s	more	than	five!!!")	
	
else:	

	print("It’s	equal	to	five!!!!!")	

Conditional	Statements	ARE	Boolean	Values	

1/27/19	 Matni,	CS8,	Wi19	 23	

a	=	int(input("Enter	a	number:	"))	
#	The	above	line	makes	the	program	
#	ask	the	user	for	a	direct	input	
#	into	an	integer.	More	on	this	later.	
	
if	(a	<	5):	

	print("It’s	less	than	five!")	
	
elif	(a	>	5):	

	print("It’s	more	than	five!!!")	
	
else:	

	print("It’s	equal	to	five!!!!!")	

Boolean	statements	
(they’re	either	TRUE	or	FALSE)	

Nested	If-Else	Statements	

1/27/19	 Matni,	CS8,	Wi19	 24	

Let’s try it out!

a	=	int(input("What	is	the	cost	of	item	X?	"))	
b	=	int(input("Enter	(0)	for	not	available,	(1)	for	available	"))	
	
if	(b	==	0):	

	print("It	doesn’t	matter	what	it	costs:	it’s	not	available!")	
else:	

	if	(a	>=	100):	
	 	print("That’s	expensive!")	
	else:	
	 	print("That’s	not	too	expensive!")	

	

Think of If-Else as a way to describe “logical branching”
What	does	this	do?	

Exercise:		
What	happens	if	I	enter:	
	
1.  100	for	a	and	0	for	b?	
2.  200	for	a	and	1	for	b?	
3.  20	for	a	and	0	for	b?	
4.  99	for	a	and	1	for	b?	

YOUR	TO-DOs	
q  Finish	reading	Chapter	5	

q  We’ll	be	discussing	loops	on	Wednesday	

q  Start	on	HW4	(due	next	MONDAY)	
q  Do	Lab3	(lab	tomorrow	;	turn	it	in	by	Friday)	

	
q  Don’t	bike	angry!	
1/25/19	 Matni,	CS8,	Wi19	 25	

1/25/19	 Matni,	CS8,	Wi19	 26	

