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Administrative	
•  Hw03	–	due	today!	
•  Hw04	–	due	next	week	on	MONDAY	

•  You	can	check	old	homework	on	GradeScope	

•  Lab03	on	Tuesday	
–  Extended	due	date!	Due	by	next	week	Monday!	

•  Midterm	Exam	#1	is	on	Wed.	Feb.	6th		
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A	Note	on	Homework	Expectations	
•  Your	lecture	notes	
•  My	lecture	slides	
•  The	book	chapter	sections	
•  Your	“detective”	work	
–  i.e.	try	things	out	on	IDLE	

•  Practice,	Practice,	Practice!!!	
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Midterm	#1	Exam	
•  Feb.	6th	9:30	AM	–	10:45	AM	
•  In	THIS	classroom	(unless	you	are	a	DSP	student)	
•  Come	10	MINUTES	EARLY	as	there	is	pre-assigned	seating	
•  CLOSED	BOOK!	But	you	can	bring	1	page	of	notes	

–  Single-side	only,	8.5”	x	11”	
–  Hand-written	or	computer	printed	is	OK!	
–  Must	turn	it	in	with	the	exam	when	done	
–  No	calculators	/	cell	phones	/	any	type	of	computer	

•  Bring	your	UCSB	ID	with	you.	NO	EXCEPTIONS.	
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Lecture	Outline	
•  Modules	in	Python	

•  Boolean	Operations	

•  Conditionals	i.e.	Decision	Control	
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Modules	in	Python	
•  We	can	collect	a	bunch	of	Python	functions	and	save	them	

together	in	a	file	
–  Often	called	a	module	or	library	
–  It’s	a	good	way	to	organize	functions	that	“go	together”	for	a	specific	

purpose	
–  The	module	can	also	have	other	code	related	to	these	functions	

•  We	can	then	“import”	that	file	over	and	use	the	functions	for	
ourselves	in	our	own	program	files	
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Modules	in	Python	
•  Recall	that	Python	is	Open-Source	Software	
– What	does	that	mean?	

•  A	lot	of	modules	have	been	created	by	various	people	
and	then	put	up	for	anyone	to	use	
–  Example:	modules	to	do	advanced	statistical	analysis,	to	
help	solve	linear	algebra	probs,	help	solve	ODEs,	etc…	

–  Google	“popular	python	libraries”!	
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Reminder:	How	Can	We	Use	Functions?	

•  Once	we	define	them,	we	can	call	them:	
–  In	a	program	(in	same	file	where	they’re	defined)	
–  In	the	IDLE	Python	shell	
–  Example:						MyFunction(5,	6,	7)	

•  We	can	also	call	them:	
–  From	another	file	altogether	
–  (to	test	them	from)	using	Pytest	
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Creating	a	Module	
Consider	a	couple	of	functions	that	we	wrote	and	that	we’d	like	to	use	
in	other	Python	programs:	

#	Doubling	function	
def	dbl(x):	
	return	2*x	

	
#	Halving	function		
def	half(x):	
	return	x/2	
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Save	them	in	a	file.	
Let’s	call	it	PinkFloyd.py	
(just	happened	to	be	what	I	was	listening	to,	
but	I’m	sure	you	can	come	up	with	a	better	name)	



Using	Modules	in	Other	Files	
Inside	another	file,	we	can	still	use	the	functions	we	defined	and	saved	in	PinkFloyd.py,	like	this:	
	
	
#	We	want	to	use	those	functions	in	PinkFloyd.py	
import	PinkFloyd	
#	from	PinkFloyd	import	*						#	another	way	to	do	this	
	
print("Inside	PinkFloyd.py")	
	
print(PinkFloyd.dbl(5))	
print(PinkFloyd.dbl("UCSB"))	
print(PinkFloyd.dbl([1,	2,	3]))	
	
print(PinkFloyd.half(42))	
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#	Doubling	function	
def	dbl(x):	

	return	2*x	
	
#	Halving	function		
def	half(x):	

	return	x/2	

Inside	PinkFloyd.py	

Inside	SomeOtherFile.py	



Conditional	Execution	
What	if	my	module	(e.g.	PinkFloyd.py)	has	instructions	in	it	other	than	the	
function	defs?	
	
#	Doubling	function	
def	dbl(x):	

	return	2*x	
	
#	Halving	function		
def	half(x):	

	return	x/2	
	
print("I'm	inside	PinkFloyd.py”)	
print(dbl(82.12))	
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When	you	import	the	module,	you	may	
NOT	want	this	stuff	to	execute	



Conditional	Execution	
What	if	my	module	(e.g.	PinkFloyd.py)	has	instructions	in	it	other	than	the	
function	defs?	
	
#	Doubling	function	
def	dbl(x):	

	return	2*x	
	
#	Halving	function		
def	half(x):	

	return	x/2	
	
if	__name__	==	"__main__":	

	print("I'm	inside	PinkFloyd.py”)	
	print(dbl(82.12))	
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Add	this	conditional	statement.	
Now	the	2	print	statements	are	only	
executed	when	we	run	PinkFloyd.py,	
not	when	we	import	it	



Testing	
#test_dbl.py	
import	pytest	
from	PinkFloyd	import	dbl	
	
def	test_dbl_1():	

	assert	dbl(0)	==	0	
def	test_dbl_2():	

	assert	dbl(2)	==	4	
def	test_dbl_3():	

	assert	dbl("UCSB")	==	"UCSBUCSB"	
	
Run	these	tests	from	the	unix	command	line:	
$python3	–m	pytest	test_dbl.py	
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Relational	Operators	
•  To	check	if	two	objects	are	equal,	we	use:	

==	operator	
•  We	can	check	other	types	of	relationships	between	two	objects:	
<	
<=	
>	
>=	
!=	
	

1/26/19	 Matni,	CS8,	Wi19	 14	

Less	than	
Less	than	or	equal	to	
Greater	than	
Greater	than	or	equal	to	
Not	equal	to	

Q:	All	of	these	produce	what	kind	of	data	type?	
	
A:	Boolean	(i.e.	True	or	False)	



What	is	the	Output	of	the	print()	statement?	

a	=	3	
b	=	(a	!=	3)	
print(b)	
	
A.  True	
B.  False	
C.  3	
D.  Syntax	error	
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Logic	Operators	
•  Logic	AND	

–  Use	in	Python:						x	and	y	
–  Presents	a	True	output	if	both	x	and	y	are	True	

•  Logic	OR	
–  Use	in	Python:						x	or	y	
–  Presents	a	True	output	if	either	x	and	y	are	True	

•  Logic	NOT	
–  Use	in	Python:						not	x	
–  Presents	a	True	output	if	x	is	False	(and	vice-versa)	
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	Exercise	1	
What	is	the	output	of	these	print()	statements?	
	
x	=	True	
y	=	False	
z	=	True	
print(	x	and	y	)	
print(	x	and	not	y	)	
print(	(x	and	y)	or	z	)	
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ç	False	
ç	True	

ç	True	



	Exercise	2	
What	is	the	output	of	these	print()	statements?	
	
a	=	3	
b	=	4	
c	=	5	
print(	a	==	3	and	b	==	4)	
print(	not	(b	<	2)	and	not	(a	!=	5)	)	
print(	(a	>	0	or	b	==	0)	and	(c	<=	5)	)	
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ç	True	
ç	False	

ç	True	



Exercise	3	
•  Write	a	function,	CheckNegInt()	that	takes	in	one	
argument	x	and	returns	True	if	2	conditions	are	met:	
–  That	x	is	an	integer	
–  That	x	is	a	negative	number	

def	CheckNegInt(x):	
	c	=	False	
	if	(type(x)	==	int)	and	(x	<	0):	
	 	c	=	True	
	return	c	
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Controlling	the	Flow	of	a	Program	
•  Programs	will	often	need	to	make	decisions	on	what	
to	continue	doing	
–  Like	coming	to	a	fork	in	the	road…	

•  We	present	the	algorithm/program	with		
	 	 	 	a	conditional	statement	(a.k.a	if-then-else)	
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Conditional	Statements:	if	and	else	
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Let’s try it out! 

Typical	Example	(NOTE	THE	INDENTS!!!)	
	
x	=	int(input("Enter	any	integer:	"))	
if	x	>=	0:	

	print	("You	entered	a	positive	number!")	
	print	("Or	it	could	be	zero!")	

else:	
	print	("You	entered	a	negative	number!")	



Conditional	Statements:	if	and	else	
The	syntax	in	Python	is:	

if conditional_statement : 
 statement 1 
 statement 2 
 … 

elif conditional_statement : 
  else statements 

elif conditional_statement : 
  more else statements 

else: 
 default else statements 
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Let’s try it out! 

a	=	int(input("Enter	a	number:	"))	
#	The	above	line	makes	the	program	
#	ask	the	user	for	a	direct	input	
#	into	an	integer.	More	on	this	later.	
	
if	(a	<	5):	

	print("It’s	less	than	five!")	
	
elif	(a	>	5):	

	print("It’s	more	than	five!!!")	
	
else:	

	print("It’s	equal	to	five!!!!!")	



Conditional	Statements	ARE	Boolean	Values	
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a	=	int(input("Enter	a	number:	"))	
#	The	above	line	makes	the	program	
#	ask	the	user	for	a	direct	input	
#	into	an	integer.	More	on	this	later.	
	
if	(a	<	5):	

	print("It’s	less	than	five!")	
	
elif	(a	>	5):	

	print("It’s	more	than	five!!!")	
	
else:	

	print("It’s	equal	to	five!!!!!")	

Boolean	statements	
(they’re	either	TRUE	or	FALSE)	



Nested	If-Else	Statements	
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Let’s try it out! 

a	=	int(input("What	is	the	cost	of	item	X?	"))	
b	=	int(input("Enter	(0)	for	not	available,	(1)	for	available	"))	
	
if	(b	==	0):	

	print("It	doesn’t	matter	what	it	costs:	it’s	not	available!")	
else:	

	if	(a	>=	100):	
	 	print("That’s	expensive!")	
	else:	
	 	print("That’s	not	too	expensive!")	

	

Think of If-Else as a way to describe “logical branching” 
What	does	this	do?	

Exercise:		
What	happens	if	I	enter:	
	
1.  100	for	a	and	0	for	b?	
2.  200	for	a	and	1	for	b?	
3.  20	for	a	and	0	for	b?	
4.  99	for	a	and	1	for	b?	



YOUR	TO-DOs	
q  Finish	reading	Chapter	5	

q  We’ll	be	discussing	loops	on	Wednesday	

q  Start	on	HW4	(due	next	MONDAY)	
q  Do	Lab3	(lab	tomorrow	;	turn	it	in	by	Friday)	

	
q  Don’t	bike	angry!	
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