Review for Final Exam

CS 8: Introduction to Computer Science, Spring 2019
Lecture \#17
Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Homework 8 due today!
- Lab 6 due today!

Final Exam Extra Review Session

Friday, June $7^{\text {th }}$ 1:00-3:00 PM PHELP 2510

(this is optional)

Finals Week

- Dr. Matni will have office hours on finals week

Monday $\quad 1: 00 \mathrm{pm}-2: 30 \mathrm{pm}$

FINALIS COMING!

- Material: Everything!
- Homework, Labs, Lectures, Textbook
- Tuesday, 6/11 in this classroom
- Starts at 4:00 PM **SHARP**
- Bring your UCSB IDs and arrive 10-15 minutes early
- Duration: 3 hours long (but really designed for 1.5-2 hours)
- Closed book: no calculators, no phones, no computers
- Allowed: 1 sheet (double-sided ok) of written notes
- Must be no bigger than $8.5^{\prime \prime} \times 11^{\prime \prime}$
- You have to turn it in with the exam
- You will write your answers on the exam sheet itself.

Example of Recursive Functions: Linear Series

- Mathematical Linear Series

Example:

$$
S(n)=0,1,4,13,40, \ldots \quad \text { for } n=0 \text { to } \infty
$$

What's the pattern?
Linear series: $\quad S_{n+1}=A . S_{n}+B \quad$ where $A \& B$ are constants

In the example above: $A=3$ and $B=1$
What is our base-case?
What is our recursion?

Example: Linear Series

- Mathematical Linear Series

Example:

$$
S(n)=0,1,4,13,40, \ldots \quad \text { for } n=0 \text { to } \infty
$$

Linear series: $\quad \underset{\substack{\text { recursion }}}{\mathrm{S}_{\mathrm{n}+1}=3 . \mathrm{S}_{\mathrm{n}}+1}$ and $\underset{\substack{\mathrm{S}_{0}=0 \\ \text { base case }}}{\mathrm{S}_{\text {a }}}$

```
def series(n):
    if n <= 0:
        return 0
    return (3*series(n-1) + 1)
```


Example: Recursive Drawing

More Practice Questions! ©

Exercise

What happens when we use the multiply operator on a list, like: $[1,2,3]$ * 2 ?
(1)। get $[2,4,6]$
(2)। get $[1,2,3,1,2,3]$
(3)। get $[[1,2,3],[1,2,3]]$
(4) I get an error message

Exercise

How many times will the character " x " print in this code?
(1) 7 times
(2) 6 times
(3) 5 times
(4) 4 times
(5) Infinite times
for m in range(3, 9, 2): print("x")
$\mathrm{n}=\mathrm{m}$
while ($n<7$): print("x")
n += 7

What is the exact output?

```
ucsb_classes = ['CS8', 'CS16', 'CS24', 'ECON1', 'COMM88',
'MATH3A', 'CHEM6A']
l = []
# Note that: chr(65) = 'A'
for c in ucsb_classes:
        if c[0] == chr(67):
    l.append(c.lower() + "!")
print(l)
```


Exercise

Write a Python function, AddG(s) that takes a string s as a parameter and returns a string with " g " after each character in the original string.
For instance:
if $s=$ "abcd" then, AddG(s) becomes "agbgcgdg", or if $t=" a o g "$ then, AddG(t) becomes "agoggg",

Exercise

- Given a dictionary: $D=\{1: 0.1,2: 0.2,3: 0.3,4: 0.4\}$
- What does this code do?

```
    D2 = \{\}
    L = list(D.values())
```

 \(\mathrm{k}=5\)
 for p in L:
 D2[k] = 1+p
 k += 2
 print(D2)
    ```
It prints:
{5: 1.1, 7: 1.2, 9: 1.3, 11: 1.4}
```


Example: Reversing a String

- Recursion in strings

Example: Reverse a string
Given a string (e.g. "hello"), you would need to return "olleh" What does a recursive algorithm look like? What is my base-case?

Hints: if $s=$ 'hello', what is $s[1:]$?

```
def revStr(s):
    if len(s) == 0:
        return s
    return revStr(s[1:]) + s[0]
```

