
Recursion	
CS	8:	Introduction	to	Computer	Science,	Spring	2019	

Lecture	#16	
	

Ziad	Matni,	Ph.D.	
Dept.	of	Computer	Science,	UCSB	



6/4/19	 Matni,	CS8,	Sp19	 2	

When	both	your	
parents	are		
software	

developers!	J	



Administrative	
•  Homework	7	due	today!	

•  Left	to-do:	
– Homework	8	for	Thursday	
– Lab	6	for	Thursday	

6/4/19	 Matni,	CS8,	Sp19	 3	



Finals	Week	
•  Dr.	Matni	will	have	office	hours	on	finals	week	
	

Monday	 	1:00	pm	–	2:30	pm	
	

6/4/19	 Matni,	CS8,	Sp19	 4	



Final	Exam	Extra	Review	Session	
Friday,	June	7th	
1:00	–	3:00	PM	
PHELP	2510	

	
	

(this	is	optional)	

6/4/19	 Matni,	CS8,	Sp19	 5	



•  Material:	Everything!	
•  Homework,	Labs,	Lectures,	Textbook	
•  Tuesday,	6/11	in	this	classroom	
•  Starts	at	4:00	PM	**SHARP**	
•  Bring	your	UCSB	IDs	and	arrive	10-15	minutes	early	
•  Duration:	3	hours	long	(but	really	designed	for	1.5	–	2	hours)	
•  Closed	book:	no	calculators,	no	phones,	no	computers	
•  Allowed:	1	sheet	(double-sided	ok)	of	written	notes	

–  Must	be	no	bigger	than	8.5”	x	11”	
–  You	have	to	turn	it	in	with	the	exam	

•  You	will	write	your	answers	on	the	exam	sheet	itself.	
6/4/19	 Matni,	CS8,	Sp19	 6	



Lecture	Outline	
•  Recursive	Functions	
•  Exercises	

6/4/19	 Matni,	CS8,	Sp19	 7	



How	Do	Functions	Work?	
•  Consider	these	3	functions	and	tell	me:	what	is	demo(-4)	?	

def	demo(x):	
	return	x	+	f(x)	

	
def	f(x):	
	return	11*g(x)	+	g(x/2)	

	
def	g(x):	
	return	-1	*	x	

6/4/19	 Matni,	CS8,	Sp19	 8	



How	Do	Functions	Work?	
•  Consider	these	3	functions	and	tell	me:	what	is	demo(-4)	?	

def	demo(x):	
	return	x	+	f(x)	

	
def	f(x):	
	return	11*g(x)	+	g(x/2)	

	
def	g(x):	
	return	-1	*	x	

6/4/19	 Matni,	CS8,	Sp19	 9	

-4	+	f(-4)	

11*g(-4)	+	g(-2)	

-1*-4	
=	4	

-1*-2	
=	2	

11*4	+	2	
=	46	

-4	+	46	
=	42	



What	Keeps	Track	of	All	of	This?!?	
Ans:	The	Computer	Memory	Stack	

(1)	keeps	separate	variables	for	each	function	call…	
(2)	remembers	where	to	send	results	back	to…	
	
The	stack	is	a	special	part	of	your	computer’s	memory.	
The	compiler	usually	spells-out	how	the	stack	must	be	used	with	functions.	

6/4/19	 Matni,	CS8,	Sp19	 10	

X	



6/4/19	 Matni,	CS16,	Fa17	 11	

 
 

A child couldn't sleep,  
so her mother told a story about a little frog, 

  who couldn't sleep,  
so the frog's mother told a story about a little bear, 

     who couldn't sleep,  
so bear's mother told a story about a little weasel 

       ...who fell asleep. 
     ...and the little bear fell asleep; 
  ...and the little frog fell asleep; 

...and the child fell asleep. 
 
 



Recursive	Functions	
•  Recursive:	(adj.)	Repeating	unto	itself	
•  A	recursive	function	contains	a	call	to	itself	

•  When	breaking	a	task	into	subtasks,	it	may	be		
	 	 	that	the	subtask	is	a	smaller	example	of	the	same	task	

•  Just	like	functions-calling-functions,	
	 	 	 	recursive	functions	make	use	of	the	stack	

6/4/19	 Matni,	CS8,	Sp19	 12	



Simple	Example:	Factorial	Function	
Recall	factorials:	

2!	=	1	*	2	,	 	 	 					3!	=	1	*	2	*	3,		 	 	 			4!	=	1	*	2	*	3	*	4,	…	
N!		=		1	*	2	*	…	*	(N-1)	*	N	

	
There’s	some	repetition	here…	We	could	think	of	it	as	a	loop	

(how	would	you	write	that?)	
	 	 	 	 	def	factorial(n):	
	 	 	 	 	 	f	=	1	
	 	 	 	 	 	for	m	in	range(1,	n+1):	
	 	 	 	 	 	 	f	=	f	*	m	
	 	 	 	 	 	return	f	

6/4/19	 Matni,	CS8,	Sp19	 13	



Consider	the	Following…	
def	fac(N):	

	return	N	*	fac(N-1) 	 	#	Yes,	this	is	legal!	
	
print(fac(4))	
	

What	happens	when	fac(4)	is	called?	
A.  It	blows	up!	Does	not	compute!	Does	not	compute!	
B.  It	returns	the	correct	result	(i.e.	24)	
C.  The	execution	never	stops	(i.e.	infinite	loop)	
D.  It	produces	a	return	value	but	that	value	is	incorrect	(i.e.	not	24)	
6/4/19	 Matni,	CS8,	Sp19	 14	

ANS	



Just	‘Cause	It’s	Legal,		
Doesn’t	Mean	It’s	Good	Code!!!	

def	fac(N):	
	return	N	*	fac(N-1)	 	#	Yes,	this	is	legal!	

6/4/19	 Matni,	CS8,	Sp19	 15	

This	goes	on	and	on	into	an	infinite	loop!	
Q: 	Why?	

A: 	It’s	missing	a	“base	case”		
(a.k.a			a	“stopping	case”)	

	
Q2:	What’s	a	good	“base	case”	here?	



Base	Case		

def	fac(N):	
	if	N	<=	1:	
	 	return	1	
	else:	
	 	return	N	*	fac(N-1)	

•  Recursive	functions	should	know	when	to	stop	
•  There	must	be	(at	least)	one	base	case,	and	the	recursive	step	must	

converge	on	a	base	case,	otherwise	you	get	an	“infinite	recursion”	
	
6/4/19	 Matni,	CS8,	Sp19	 16	



Under	the	Hood…	
>>>	fac(1)	
I	get:	

	 	1 		
	
>>>	fac(5) 	 		

6/4/19	 Matni,	CS8,	Sp19	 17	

def	fac(N):	
	if	N	<=	1:	
	 	return	1	
	else:	
	 	return	N	*	fac(N-1)	

#	easy-peasy	

à 5	*	fac(4)	
à 5	*	(4	*	fac(3))	
à 5	*	(4	*	(3	*	fac(2)))	
à 5	*	(4	*	(3	*	(2	*	fac(1))))	
à 5	*	(4	*	(3	*	(2	*	1)))	 	 			=	120	

Every	step,	the	new	
values	are	put	into	the	
STACK	and	kept	track	of	
by	the	computer	



Exercise	
•  What	does	MyRecFun(3)	do?	

def	MyRecFun(n):					
	if	n	==	0:	
	 	return	2					
	else:	
	 	return	2*MyRecFun(n-1)	

	6/4/19	 Matni,	CS8,	Sp19	 18	



Another	Example:		
Mathematical	Series	

•  Popular	example:	Fibonacci	Series	
F(n)	=	1,	1,	2,	3,	5,	8,	13,	…,	F(n-1)	+	F(n-2)	

•  There’s	some	repetition	here…		
	 	 	 	 	We	could	think	of	it	as	a	loop	also	
	

•  Or	we	could	think	of	it	as	a	recursive	function!	

6/4/19	 Matni,	CS8,	Sp19	 19	



Fibonacci	Recursion	
•  What	is/are	the	BASE	CASE(S)?	
•  What	is	the	recursive	formula?	

	 	 	def	fibo(n):					
	 	 	 	if	n	==	1:	
	 	 	 	 	return	1					
	 	 	 	if	n	==	2:									
	 	 	 	 	return	1		
	 	 	 	else:	#	is	this	else	necessary?	
	 	 	 	 	return	fibo(n-1)	+	fibo(n-2)	

6/4/19	 Matni,	CS8,	Sp19	 20	



YOUR	TO-DOs	
q  Homework	8	(due	on	Thursday)	
q  Lab	6	(due	on	Thursday)	

6/4/19	 Matni,	CS8,	Sp19	 21	



6/4/19	 Matni,	CS8,	Sp19	 22	


