
Data	Mutation	and	Related	Topics	
CS	8:	Introduction	to	Computer	Science,	Spring	2019	

Lecture	#6	
	

Ziad	Matni,	Ph.D.	
Dept.	of	Computer	Science,	UCSB	

Administrative	
•  Hw03	–	due	next	week	
	
•  Lab01	–	due	on	Sunday	by	midnight	(11:59	pm)	on	
Gradescope!	

•  You	can	check	old	homework	on	GradeScope	

4/18/19	 Matni,	CS8,	Sp19	 2	

Lecture	Outline	
•  Print	vs.	Return	

•  The	range()	Function	

•  Mutability	of	Variables	in	Python	
–  Caution:	may	cause	temporary	headaches!	:{	

4/18/19	 Matni,	CS8,	Sp19	 3	

Reassignment	
•  Def:	change	the	value	of	a	variable	by	assigning		
(using	the	=	op.)	again	

Example:	
	 	>>>	x	=	9	
	 	>>>	print(x	+	4)	
	 	>>>	x	=	23 	 	 	 	#	x	is	reassigned	
	 	 	etc…	

4/18/19	 Matni,	CS8,	Sp19	 4	

Mutability	of	Variables	
•  Consider	this	function:	
	

def	DoIt(a,	b):	
	a	=	b	+	1	
	b	=	a/2	
	print(a,	",",	b)	

4/18/19	 Matni,	CS8,	Sp19	 5	

What	happens	if	I	do	this	in	IDLE?	
	
>>>	x	=	67	
>>>	y	=	13	
>>>	DoIt(y,	x)	

Answers:	
A.  It	will	print	 	67,	13	
B.  It	will	print	 	68,	34	
C.  It	will	print	 	14,	7	
D.  It	will	print	 	8,	7	
E.  Something	else	

Mutability	of	Variables	
•  Consider	this	function:	
	

def	DoIt(a,	b):	
	a	=	b	+	1	
	b	=	a/2	
	print(a,	",",	b)	

4/18/19	 Matni,	CS8,	Sp19	 6	

What	happens	if	I	do	this	in	IDLE?	
	
>>>	a	=	67	
>>>	b	=	13	
>>>	DoIt(b,	a)	
>>>	print(a,	","	,	b)	

Why	didn’t	the	DoIt()	function	NOT	
change	the	value	of	the	Python	shell	
variables	a,	b	?	

Answers:	
A.  Prints	68	,	34			then			68	,	34	on	another	line	
B.  Prints	68	,	34			then			67	,	13	on	another	line	
C.  Prints	14	,	7					then			14	,	7	on	another	line	
D.  Prints	14	,	7					then			67	,	13	on	another	line	
E.  Something	else	

Mutability	of	Variables	
•  Consider	this	function:	
	

def	DoIt(a,	b):	
	a	=	b	+	1	
	b	=	a/2	
	print(a,	",",	b)	

4/18/19	 Matni,	CS8,	Sp19	 7	

What	happens	if	I	do	this	in	IDLE?	
	
>>>	a	=	67	
>>>	b	=	13	
>>>	DoIt(b,	a)	
>>>	print(a,	","	,	b)	

Why	didn’t	the	DoIt()	function	NOT	
change	the	value	of	the	Python	shell	
variables	a,	b	?	

These	are	treated	as	different	a’s	and	b’s!		
Reassignment	within	the	function	has	NO	
EFFECT	on	the	variables	in	the	Python	
shell	/	rest	of	the	Python	program.	

Mutability	of	Variables	
•  Let’s	try	another	one:	
	
def	mutate(a):	

	a[0]	=	a[1]	+	1	
	a[1]	=	a[0]/2	
	print(a[0],	","	,	a[1])	

4/18/19	 Matni,	CS8,	Sp19	 8	

What	happens	if	I	do	this	in	IDLE?	
	
>>>	x	=	[67,	13]	
>>>	mutate(x)	
>>>	print(x)	

Answer:	
It	prints:		

	 	[14	,	7]	
	 	[14	,	7]	

Mutability	of	Variables	
•  Let’s	try	another	one:	
	
def	mutate(a):	

	a[0]	=	a[1]	+	1	
	a[1]	=	a[0]/2	
	print(a[0],	","	,	a[1])	

4/18/19	 Matni,	CS8,	Sp19	 9	

What	happens	if	I	do	this	in	IDLE?	
	
>>>	x	=	[67,	13]	
>>>	mutate(x)	
>>>	print(x)	

The	list	WAS	changed	by	the	function!!	

Answer:	
It	prints:		

	 	[14	,	7]	
	 	[14	,	7]	

Mutable	vs.	Immutable	data	
Changeable	types 		vs. 	 	Unchangeable	types	
list 	 	 	 	 	 	 	 	 	 	float	 	int	
Turtle	(more	on	this	later) 	 	 	 	str 	 	bool	
dictionary	(more	on	this	later)	 	 	tuple	
Any	user-defined	object 	 	 		

4/18/19	 Matni,	CS8,	Sp19	 10	

Lists	are	Mutable	Data	
For	example,	if	the	list	myL	is	defined	as	follows:	
	
myL	=	[1,	2,	3,	4]	

	 	 	and	then	I	do	this:			myL[3]	=	42	
	
myL	now	becomes:			[1,	2,	3,	42]	

4/18/19	 Matni,	CS8,	Sp19	 11	

The	range()	Function	
•  Built-in	function	in	Python	provides	a	handy	list	

•  Simplest	use:	range(n)
–  Creates	a	something	that	looks	like	a	list	

	 	 	 	 	with	n	items:	[0, 1, 2, …, n-1]

•  Example:	
>>>	print(list(range(5)))	

Will	print	out:	
	[0	,	1,	2,	3,	4]	

4/18/19	 Matni,	CS8,	Sp19	 12	

The	range()	Function	
•  You	can	also	do	a	range()	with	start	&	stop	parameters.	
•  Example:	
>>>	print	(list(range(5,	8)))	

	This	will	print	out	the	list	[5,	6,	7]	(note	it	excludes	8)	
	

•  Or	you	can	have	start,	stop	and	step	parameters.	
•  Example:	
>>>	print	(list(range(1,	11,	4)))	

This	will	print	out	the	list	[1,	5,	9]	

4/18/19	 Matni,	CS8,	Sp19	 13	

Will	come	in	very	handy	when	
we	learn	about	loops!	

Reassignment	vs.	Data	Mutation	
If	I	do	this:	
myL	=	list(range(1,	5))	 	myL	=	[1,	2,	3,	4]	

	
Then	I	do	this:	
myL	=	list(range(10,	13)) 	myL	=	[10,	11,	12]	
	
This	is	a	REASSIGNMENT	of	the	variable	myL	

	 	 	 	(I	completely	changed	variable	myL)	

4/18/19	 Matni,	CS8,	Sp19	 14	

Reassignment	vs.	Data	Mutation	
But,	if	I	do	this	(again):	
myL	=	list(range(1,	5)) 	 	myL	=	[1,	2,	3,	4]	
	
Then	I	do	this:	
myL[1]	=	10	
myL[2]	=	11 	 	 	 	 	 	mL	=	[1,	10,	11,	4]	
	
This	is	changing	the	object	that	myL	references!	
It’s	NOT	a	reassignment	of	myL!	
4/18/19	 Matni,	CS8,	Sp19	 15	

So	What…?	
•  It	matters	because	variables	are	really	a	reference	to	
some	value	

•  Note	that	if	I	do	the	following:	
	
	
>>>	myL	=	list(range(1,5))	
>>>	yourL	=	myL	
>>>	print	(yourL[1]) 	 	 	#	this	prints	2	

4/18/19	 Matni,	CS8,	Sp19	 16	

But	Wait!...	
•  And	now	note		
								that	if	I	do	this:	

	
	
>>>	myL	=	list(range(1,5))	
>>>	yourL	=	myL	
>>>	yourL[1]	=	100	
>>>	print	(myL[1])	 	 	#	prints	100,	not	2!!!	

4/18/19	 Matni,	CS8,	Sp19	 17	

Explanation	
•  myL	references	[1,2,3,4]	
•  yourL	references	what	myL	references	
•  If	something	in	yourL	changes,	then	it	is	

reflected	in	myL	also!	

One	More	Thing…	
•  Now	note	that	if	I	do	this:	
	
	
	
	
>>>	myL	=	list(range(1,5))	
>>>	yourL	=	myL	
>>>	myL	=	list(range(7,	10))	
>>>	myL[1]	=	42	
>>>	print	(yourL[1])	 	 	#	prints	2,	not	42!!!	

4/18/19	 Matni,	CS8,	Sp19	 18	

Explanation	
•  myL	references	[1,2,3,4]	
•  yourL	references	what	myL	references	
•  I	reassigned	myL	completely:	this	

“detaches”	yourL	from	myL’s	reference	
•  If	I	change	something	in	myL,	it’s	not	

reflected	anymore	on	yourL	

Summary	of	Findings…	
•  Mutable	is	a	type	of	variable	that	can	be	changed 	 	(Lists	are	mutable)	

•  Immutables	are	the	objects	whose	state	cannot	be	changed	once	the	object	is	created
	 	 	 	 	 	 	 	 	 	(Strings	and	numbers	are	immutable)	

Example: 	 	msg	=	“Hello”	
	 	 	msg	=	msg	+	“	World”	
	 	 	print(msg)				#	Will	print	out	“Hello	World”	

	
•  On	appending	the	variable	msg	with	a	string	value,	the	following	events	occur:	

–  The	existing	value	of	string	msg	is	retrieved	

•  "World"	is	appended	to	the	existing	value	of	string	msg		
•  The	resultant	value	is	then	allocated	to	a	new	block	of	memory	
•  The	msg	object	now	points	to	the	newly	created	memory	space	(reassignment)	

4/18/19	 Matni,	CS8,	Sp19	 19	

Functions	and	Immutable	Variables	
•  Let’s	say	I	have	x	=	7	and	y	=	9	and	I	want	to	swap	their	values,		

so	that	x	=	9	and	y	=	7	
–  There’s	a	classic	algorithm	for	that…	

	 	 	tmp	=	x	
	 	 	x	=	y	
	 	 	y	=	tmp	

•  But,	what	if	I	want	to	do	this	through	a	function	swap(a,b)	

•  Can	I	do	that?	
–  Let’s	see…	

4/18/19	 Matni,	CS8,	Sp19	 20	

Swap	Function:	Will	it	Work	or	Not?	
>>>	def	swap(a,b):	
	temp	=	a	
	a	=	b	
	b	=	temp	

	
>>>	x	=	5	
>>>	y	=	10	
>>>	swap(x,y)	
>>>	print(x,	y)	
5	10	

4/18/19	 Matni,	CS8,	Sp19	 21	

L	D’oh!	

Explanation	
•  That’s	because	I	was	dealing	with	

immutable	objects	(ints)!!!!	

Functions	and	Mutable	Variables	
•  Let’s	say	I	have	a	list	myL	=	[2,	4,	6]	and	I	want	to	
swap	the	values	in	position	1		and	position	2	
–  That	is,	I	want	myL	to	become	[2,	6,	4]	

•  I	want	to	do	this	through	a	function	swap(L,	p1,	p2)	

•  Can	I	do	that?	
–  Let’s	see…	

4/18/19	 Matni,	CS8,	Sp19	 22	

Swap	Function:	Will	it	Work	or	Not?	
>>>	def	swap(L,	p1,	p2):	

	 	temp	=	L[p1]	
	 	L[p1]	=	L[p2]	
	 	L[p2]	=	temp	

>>>	myL	=	[2,	4,	6]	
>>>	swap(myL,	1,	2)	
>>>	print(myL)	
[2,	6,	4]	

4/18/19	 Matni,	CS8,	Sp19	 23	

J	Yay!	

Explanation	
•  That’s	because	I	was	dealing	with	

mutable	objects	(a	list)!!!!	

Big	Conclusion!	
•  You	can	change	the	contents	of	lists	inside	functions	
that	take	those	lists	as	input.	
–  Actually,	lists	or	any	mutable	object…	

•  Those	changes	will	be	visible	everywhere.	
–  Immutable	objects	(like	ints)	are	safe	from	these	
shinanigans,	however…	

4/18/19	 Matni,	CS8,	Sp19	 24	

Loops	
•  Sometimes	we	want	to	be	able	to	repeat	a	part	of	the	program	a	

certain	number	of	times	without	being	repetitive	
–  Called	a	“loop”	

•  So	instead	of	saying:	
	 	 	print(“hello”)	
	 	 	print(“hello”)	
	 	 	print(“hello”)	

	I	can	say:	
	 	 	do	the	following	3	times:	
	 	 	 	print(“hello”)	

	

•  A	popular	way	to	do	this	is	with		
	 	 	 	the	for	and	the	while commands.	

4/19/19	 Matni,	CS8,	Sp19	 25	

Repetition	with	a	for	loop	
•  for ref			in some	list:
 #	block	of	instructions	–	ref		refers	to	current	object	in	list	
	 	 	#	note	that	the	block	is	all	indented	
–  for,	in,	:	–	mandatory	parts	
–  ref	–	a	name	for	referring	to	objects	in	the	list	

•  Example:	
for	numbers	in	(0,	1,	2,	3,	4,	5):	
	 	print	(numbers)	

	

This	will	print	out	the	numbers	1	thru	5	in	sequence	

4/19/19	 Matni,	CS8,	Sp19	 26	

Other	Examples	
for	x	in	(9,	22,	-77,	1):	

	y	=	x	+	10	
	print	(y)	

	
	
for	y	in	("Hello",	"Mother",	"Hello",	"Father"):	

	print	(x,	"!!")	
	
	
n	=	0	
for	item	in	["UCSB	Location",	(34.4140,	-119.8489)]:	

	n	=	n	+	1	
	print(n,	item)	

	

4/19/19	 Matni,	CS8,	Sp19	 27	

WHAT	DO	YOU	THINK	THESE	
LOOPS	PRINT	OUT?	

Using	range	with	for	loops	
•  The	range()	built-in	function	provides	a	handy	list	
•  Simplest	use:	range(n)

–  Creates	a	list	with	n	items	[0, 1, 2, …n-1]

•  Example:	
	 	 	for	numbers	in	range(6):	
	 	 	 	 	print	(numbers)	

	
This	will	print	out	the	numbers	1	thru	5	in	sequence	

(just	like	the	last	example)	

4/19/19	 Matni,	CS8,	Sp19	 28	

YOUR	TO-DOs	
q  Finish	reading	Chapter	5	
q  Finish	HW3	(due	TUESDAY)	
q  Finish	Lab2	(turn	it	in	by	Sunday)	

	
q  Don’t	bike	angry!	

4/18/19	 Matni,	CS8,	Sp19	 29	

4/18/19	 Matni,	CS8,	Sp19	 30	

